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I.   INTRODUCTION 

Fractional calculus belongs to the field of mathematical analysis, involving the research and applications of arbitrary order 

integrals and derivatives. Fractional calculus originated from a problem put forward by L’Hospital and Leibniz in 1695. 

Therefore, the history of fractional calculus was formed more than 300 years ago, and fractional calculus and classical 

calculus have almost the same long history. Since then, fractional calculus has attracted the attention of many contemporary 

great mathematicians, such as N. H. Abel, M. Caputo, L. Euler, J. Fourier, A. K. Grunwald, J. Hadamard, G. H. Hardy, O. 

Heaviside, H. J. Holmgren, P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann, M. Riesz, and H. Weyl. 

With the efforts of researchers, the theory of fractional calculus and its applications have developed rapidly. On the other 

hand, fractional calculus has wide applications in physics, electrical engineering, , viscoelasticity, control theory, 

economics, and other fields [1-10].  

However, different from the traditional calculus, the rule of fractional derivative is not unique, many scholars have given 

the definitions of fractional derivatives. The common definition is Riemann-Liouville (R-L) fractional derivatives. Other 

useful definitions include Caputo fractional derivatives, Grunwald-Letnikov (G-L) fractional derivatives, and Jumarie type 

of R-L fractional derivatives to avoid non-zero fractional derivative of constant function [11-15]. 

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we 

obtain the exact solution of a fractional integral of fractional rational function. In fact, our result is a generalization of 

ordinary calculus result. 

II.   PRELIMINARIES 

Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([16]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                        (1) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 
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                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                                   (2) 

where Γ( ) is the gamma function. 

Proposition 2.2 ([17]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                                   (3) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                                  (4) 

Definition 2.3 ([18]): If 𝑥, 𝑥0, and 𝑎𝑛 are real numbers for all 𝑛, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼 -fractional power series, that is, 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  on some open interval 

containing 𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed 

interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic 

function on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([19]): If 0 < 𝛼 ≤ 1. Assume that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional power series at 𝑥 = 𝑥0, 

                                                                                    𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                         (5) 

                                                                                   𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 .                                                         (6) 

Then  

                                                                    𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                               = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                                  (7) 

Equivalently, 

                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                    = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                    = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                                (8) 

III.   MAIN RESULT 

In this section, we study a fractional integral of fractional rational function.  

Theorem 3.1: Suppose that 0 < 𝛼 ≤ 1, then the 𝛼-fractional integral 

     ( 𝐼0 𝑥
𝛼) [[1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 (−2)

] =
1

2
∙ 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼) +

1

2
∙

1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

)

⨂𝛼 (−1)

 .     (9) 

Proof  Let  
1

Γ(𝛼+1)
𝑥𝛼 = 𝑡𝑎𝑛𝛼(𝑡𝛼), then  

1

Γ(𝛼+1)
𝑡𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼). Therefore, 

                                         ( 𝐼0 𝑥
𝛼) [[1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 (−2)

]  
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                                   = ( 𝐼0 𝑥
𝛼) [[1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 (−2)

⨂𝛼 ( 𝐷0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼]]  

                                  = ( 𝐼0 𝑡
𝛼) [[1 + (𝑡𝑎𝑛𝛼(𝑡𝛼))

⨂𝛼 2
]

⨂𝛼 (−2)

⨂𝛼 ( 𝐷0 𝑡
𝛼)[𝑡𝑎𝑛𝛼(𝑡𝛼)]]  

                                 = ( 𝐼0 𝑡
𝛼) [[(𝑠𝑒𝑐𝛼(𝑡𝛼))

⨂𝛼 2
]

⨂𝛼 (−2)

⨂𝛼 (𝑠𝑒𝑐𝛼(𝑡𝛼))
⨂𝛼 2

]  

                                 = ( 𝐼0 𝑡
𝛼) [(𝑠𝑒𝑐𝛼(𝑡𝛼))

⨂𝛼 (−2)
]  

                                 = ( 𝐼0 𝑡
𝛼) [(𝑐𝑜𝑠𝛼(𝑡𝛼))

⨂𝛼 2
] 

                                 = ( 𝐼0 𝑡
𝛼) [

1

2
[1 + 𝑐𝑜𝑠𝛼(2𝑡𝛼)]]  

                                 =
1

2
( 𝐼0 𝑡

𝛼)[1 + 𝑐𝑜𝑠𝛼(2𝑡𝛼)] 

                                 =
1

2
∙

1

Γ(𝛼+1)
𝑡𝛼 +

1

4
∙ 𝑠𝑖𝑛𝛼(2𝑡𝛼)  

                                 =
1

2
∙

1

Γ(𝛼+1)
𝑡𝛼 +

1

2
∙ 𝑠𝑖𝑛𝛼(𝑡𝛼)⨂𝛼 𝑐𝑜𝑠𝛼(𝑡𝛼)  

                                 =
1

2
∙

1

Γ(𝛼+1)
𝑡𝛼 +

1

2
∙ 𝑡𝑎𝑛𝛼(𝑡𝛼)⨂𝛼 (𝑐𝑜𝑠𝛼(𝑡𝛼))

⨂𝛼 2
  

                                 =
1

2
∙

1

Γ(𝛼+1)
𝑡𝛼 +

1

2
∙ 𝑡𝑎𝑛𝛼(𝑡𝛼)⨂𝛼 ((𝑠𝑒𝑐𝛼(𝑡𝛼))

⨂𝛼 2
)

⨂𝛼 (−1)

  

                                 =
1

2
∙

1

Γ(𝛼+1)
𝑡𝛼 +

1

2
∙ 𝑡𝑎𝑛𝛼(𝑡𝛼)⨂𝛼 (1 + (𝑡𝑎𝑛𝛼(𝑡𝛼))

⨂𝛼 2
)

⨂𝛼 (−1)

  

                                 =
1

2
∙ 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼) +

1

2
∙

1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

)

⨂𝛼 (−1)

  .                                      Q.e.d. 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we 

study a fractional integral of fractional rational function. In fact, our result is a generalization of traditional calculus result. 

In the future, we will continue to use Jumarie’s modified R-L fractional calculus and the new multiplication of fractional 

analytic functions to solve problems in fractional differential equations and applied mathematics. 
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